
research papers

656 Diller & Hol � Equilibration rate of a hanging-drop experiment Acta Cryst. (1999). D55, 656±663

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

An accurate numerical model for calculating the
equilibration rate of a hanging-drop experiment

David J. Dillera* and Wim G. J.

Hola,b,c

aDepartment of Biological Structure,

Biomolecular Structure Center, University of

Washington, Box 357742, Seattle, WA 98195,

USA, bDepartment of Biochemistry,

Biomolecular Structure Center, University of

Washington, Box 357742, Seattle, WA 98195,

USA, and cHoward Hughes Medical Institute,

Biomolecular Structure Center, University of

Washington, Box 357742, Seattle, WA 98195,

USA

Correspondence e-mail:

ddiller@u.washington.edu

# 1999 International Union of Crystallography

Printed in Denmark ± all rights reserved

A numerical model of the equilibration of a hanging-drop

experiment has been developed and tested. To obtain accurate

calculations with a given precipitant, the vapor pressure of

water over water/precipitant solutions must be known for

various concentrations of the precipitant. The calculations of

the model are in excellent agreement with all available

experimental data on hanging-drop equilibration when the

necessary vapor pressures are known (ammonium sulfate and

sodium chloride). By varying each of the relevant rate

constants in the model, the rate-limiting step in the

equilibration of a hanging drop is determined. This analysis

clearly shows that the rate-limiting step is the diffusion of

water vapor from the drop to the reservoir, which agrees with

experimental ®ndings. Since the diffusion of water vapor is the

rate-limiting step, there is virtually no precipitant concentra-

tion gradient in the drop during equilibration. As a result,

there is no gravity-induced convection owing to the equilibra-

tion. Thus, whereas gravity might have an effect during crystal

growth, gravity does not affect the equilibration rate of a

hanging-drop experiment to a signi®cant extent, and the

diffusion of water vapor will remain the rate-limiting step in

the absence of gravity. Finally, the effects of several of the

parameters, such as initial drop volume, drop-to-reservoir

distance and temperature, are considered quantitatively. The

equilibration rate was found to vary nearly linearly with drop

volume. The equilibration rate decreases roughly by a factor

of three as the temperature decreases from 293 to 276 K. This

decrease in the equilibration rate is greater than would be

expected when just considering the change in the diffusion

coef®cient of water vapor in air. This large dependence can,

however, be attributed to the change in water-vapor pressure.

Most surprisingly, a linear dependence on drop-to-reservoir

distance is found, a result that agrees very well with

experiment.
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1. Introduction

Crystallization is often the rate-limiting step in protein struc-

ture determination via X-ray crystallography. Accordingly,

more emphasis is being placed on understanding protein

crystal growth (McPherson et al., 1995) and on standardizing

protein crystallization techniques (Ducruix & GiegeÂ, 1992).

There are several commonly used protein crystallization

techniques: the most important ones being the batch, hanging-

drop, sitting-drop, dialysis and capillary methods. Of these

techniques, the hanging drop is one of the most frequently

used.

Recently, there have been efforts to control nucleation

through means such as varying the temperature (Rosenberger



& Meehan, 1988) and varying the precipitant concentration

(Blow et al., 1994) as functions of time. The technique of

varying the temperature is beginning to show great promise

(see for example DeMattei & Feigelson, 1992; Lorber &

GeigeÂ, 1992; Schall et al., 1996). The goal is to lower the degree

of supersaturation just before many nuclei cross the energy

barrier and become stable micro-crystals, thereby preventing

all but one or a few nuclei from becoming stable. As a result,

enough free protein remains so that the stable nuclei can

subsequently grow to diffraction-size crystals (Feher & Kam,

1985).

During a hanging-drop experiment, the concentration of

precipitant in the drop can be controlled by varying the

concentration of the precipitant in the reservoir. Several

groups are using this technique with some success (see e.g.

Gernert et al., 1988; Przybylska, 1989; Wilson et al., 1991;

Sygusch et al., 1996). Unfortunately, it is currently dif®cult to

estimate a priori the effects on the drop of varying the

precipitant concentration in the reservoir, and it is even more

dif®cult to vary the precipitant concentration in the reservoir

to obtain a desired equilibration rate. As a result, important

information about nucleation as a function of precipitant

concentration is being lost.

The equilibration of a hanging-drop experiment is driven by

the difference between the chemical potential of the water in

the drop and the chemical potential of water in the reservoir

(in this case, the chemical potential of water is directly related

to the vapor pressure of water; see, for example, Guggenheim

& Stokes, 1969). The chemical potential of water will be the

lowest where the concentration of precipitant is the highest.

Thus, water will move from regions of low precipitant

concentration (typically the drop) to regions of high precipi-

tant concentration (typically the reservoir). In order to travel

from the drop to the reservoir, the water ®rst evaporates from

the surface of the drop then travels via diffusion through the

air space to the surface of the reservoir and ®nally condenses

into the reservoir. As the water evaporates from the drop, the

concentration of precipitant increases near the drop surface.

Thus, as we shall see below, a small precipitant concentration

gradient forms in the drop which then must be equilibrated via

diffusion. Also, as the water condenses on the surface of the

reservoir, a precipitant concentration gradient will form in the

reservoir. As the reservoir is typically much larger than the

drop, this concentration gradient is quite small and is not

likely to have any in¯uence on the equilibration rate.

Recently, the equilibration of a hanging drop has been

studied both experimentally (Mikol et al., 1990; DeTitta &

Luft, 1995; Luft & DeTitta, 1995; Luft et al., 1996) and theo-

retically (Fowlis et al., 1988; Sibille et al., 1991). In Fowlis et al.

(1988), a model of the equilibration of a hanging drop is

developed. They argue quite convincingly that in the absence

of gravity the rate-limiting step should be the diffusion of the

precipitant in the drop, but owing to gravity-induced convec-

tion precipitant concentration gradients equilibrate much

more rapidly on earth and the rate-limiting step is the diffu-

sion of the water vapor. Because of the complexity of the

problem several approximations were necessary to obtain an

analytical solution. For example, it was necessary to assume

that the cell was spherical in shape so that spherical coordi-

nates could be used. Furthermore, the diffusion of precipitant

in the drop could not be modeled explicitly: the authors had to

assume the precipitant concentration was spatially constant.

This assumption unfortunately made it impossible to conclu-

sively determine the role of gravity in the equilibration

process.

In Mikol et al. (1990), the ®rst experimental study of the

equilibration of a hanging drop was described. In particular,

they investigated the importance of temperature, initial drop

volume and type of precipitant. To approach the question of

the rate-limiting step experimentally, DeTitta & Luft (1995)

measured the equilibration rate of sitting drops at different

residual air pressures in the vapor space. They found that the

equilibration rate increased with decreasing air pressure. Since

in theory the diffusion coef®cient of water vapor in air is

inversely proportional to the air pressure, this offered strong

evidence that the diffusion of water vapor is the rate-limiting

step. Finally, Luft et al. (1996) showed that the equilibration

rate of a hanging-drop experiment decreased with increasing

drop-to-reservoir distance. This showed conclusively that the

rate-limiting step is indeed the diffusion of water vapor.

In using experimental methods to measure the equilibration

rate, time-consuming experiments must be run for every

possible set of starting conditions. It is, therefore, impractical

to experimentally explore the hundreds if not thousands of

vapor-diffusion protocols currently in use. Since theoretical

methods do not suffer from such drawbacks, they could be a

valuable tool.

The program Drop described in this manuscript is an

attempt to unify these bodies of work. Using a numerical

solution of standard diffusion-type equations, Drop attempts

to calculate the rate of equilibration of a hanging drop with a

varying reservoir concentration. Its calculations are in excel-

lent agreement with available data.

2. Methods

2.1. The rate constants

There are three rate constants considered in the model: Dp,

Dv and E. The constant Dp is the diffusion coef®cient of the

precipitant in water and is typically around 10ÿ5 cm2 sÿ1

(Robinson & Stokes, 1959). The constant Dv is the diffusion

coef®cient of water vapor in air and is typically around

0.25 cm2 sÿ1 (Handbook of Chemistry and Physics, 1996). The

constant E is the evaporation/condensation coef®cient for

water. Loosely, E is the probability that a water molecule

striking a water/air interface will change state. It is a dimen-

sionless constant which has been estimated to range between

0.05 (Jones, 1992) and 1.0 (Jamieson, 1964). While this seems

like a rather large amount of uncertainty, it turns out that in

this range E has little effect on the equilibration rates. For

Drop the value of 1.0 is used, as this seems to have the

strongest experimental backing.
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2.2. The mathematical model

The differential equations governing the diffusion of the

precipitant in the drop and the water vapor in the air are
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�
@2u

@x2
� @
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� @
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respectively (see, for example, Crank, 1975 and Cussler, 1984),

where u is the concentration of the precipitant in the drop and

v is the concentration of the vapor in the air space. Both u and

v are functions of the spatial variables and of time. The

equation governing the rate of evaporation, ER, from the drop

is (Jones, 1992)

ER � �E=�2�RTMw�1=2��Peq ÿ Pact�; �3�
where E is the aforementioned evaporation/condensation

coef®cient, Mw the molecular weight of water, R the universal

gas constant, T the absolute temperature, Peq the equilibrium

vapor pressure of the solution at the surface of the drop and

Pact the actual vapor pressure at the surface of the drop.

Equation (3) must then be integrated over the surface of the

drop to calculate the rate of change of the volume of the drop.

For the model, Pact is approximated via the ideal gas law, i.e.

Pact � ��N=�V�RT � vRT; �4�
where �V is a small volume element, �N is the number of

water molecules in �V and v is again the concentration of

water vapor in the cell [introduced in (2)]. The function Peq

depends upon the precipitant concentration u at the surface of

the drop. The program Drop incorporates experimentally

measured vapor-pressure data directly. Vapor-pressure data

can take the form of chemical potentials, activities, osmotic

coef®cients or vapor pressures of water over solutions at

various concentrations of the precipitant. For the results

presented in this report, the tables of osmotic coef®cients

found in Robinson & Stokes (1959) were used. From the

osmotic coef®cient ' at a given concentration of precipitant u,

the vapor pressure P(u) of the solution is calculated from

P�u� � P�0� exp�'�u��r�; �5�
where � is the number of ions dissolved per precipitant

molecule (for example, three for ammonium sulfate and two

for sodium chloride) and r is the ratio of moles of precipitant

to moles of water (Guggenheim & Stokes, 1969). These

osmotic coef®cients were typically measured at 298 K. An

assumption for the results presented in this report is that the

osmotic coef®cient does not change with temperature. For the

range of temperatures of interest this seems to be an adequate

assumption. For more complicated precipitants such as poly-

ethylene glycol this assumption will, however, need to be

tested.

Notice that in the above discussion of the rate constants, the

precipitant is assumed to be non-volatile. If it were volatile

(for example ethanol) then a fourth rate constant, the diffu-

sion coef®cient for the precipitant in air, would be necessary.

Volatile precipitants can, in theory, be covered adequately by

this model. The model used by Drop, however, does not

currently consider volatile precipitants. Also, the diffusion of

additional species, such as additives, buffers or proteins, in the

drop could be handled by the model in a straightforward

manner but currently are not.

Beyond the equations that govern the diffusion and the rate

of evaporation, boundary conditions are necessary to obtain a

solution. All the boundary conditions except that at the air±

reservoir interface are derived from the following considera-

tions.

(i) No precipitant ¯ows out of the drop or reservoir, i.e. the

precipitant is non-volatile.

(ii) No water/vapor ¯ows out of the cell.

(iii) Any water that ¯ows out of (or into) the drop must ¯ow

into (or out of) the vapor space (similarly for the reservoir).

These boundary conditions are derived from the conser-

vation of mass of each species. The volume of the reservoir

and the concentration of precipitant in the reservoir are

assumed constant. The boundary condition at the surface of

the reservoir simply becomes that the chemical potential of

water is continuous at this interface. While in theory the

assumption that the volume and precipitant concentration of

the reservoir do not change violates the conservation of mass,

in practice it has no effect because the volume of the reservoir

is 100±1000 times larger than the volume of the drop.

There are two simplifying assumptions in the model. Firstly,

the drop is assumed to be in the shape of a sphere and

maintains a constant contact angle with the top of the cell

throughout the simulation. Secondly, the problem is assumed

radially symmetric. Thus, by using cylindrical coordinates, the

three-dimensional problem is converted into a two-dimen-

sional one. Cylindrical coordinates result in no loss in accuracy

if a cylindrical cell is used.

2.3. The numerical methods

To numerically integrate the diffusion equation for the

precipitant in the drop, a uniformly spaced rectangular grid is

used. For the results presented in this report a 20 � 20 grid

proved to be suf®cient. The size of the grid was determined by

varying the grid until the calculated equilibration curves no

longer changed. The program Drop explicitly integrates this

diffusion equation (see, for example, Burden & Faires, 1985).

To numerically integrate the diffusion equation for the

water vapor in the cell, a non-uniformly spaced locally

rectangular grid is used. Smaller grid spacing near the drop

and the reservoir proved to be more ef®cient than a uniformly

spaced grid. For the results presented in this report eight grid

points in the r direction and 20 in the z direction (drop-to-

reservoir direction) proved to be suf®cient. The size of this

grid spacing was determined as that of the drop grid. The

program Drop implicitly integrates this diffusion equation

(see, for example, Burden & Faires, 1985).



To calculate the equilibration of four curves (8, 16, 24 and

32 ml initial drop volumes at 293 K) for a time period of 96 h,

Drop took a total of 1 h of CPU time on a Dec Alpha 4100/

400. By increasing the grid spacing, this time could easily be

cut by a factor of 10 without much loss in accuracy. The

program Drop was written in C++ and was compiled using the

GNU v2.4 C/C++ compiler. It should compile on any ANSI

C++ compiler and is freely available from the corresponding

author.

3. Results

First Drop's calculated equilibration curves were compared to

experimentally determined equilibration curves. In Mikol et
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Figure 1
Calculated equilibration curves versus observed equilibration curves. All calculations were performed with a 1 cm cell height and a reservoir of 1.6 M
ammonium sulfate. The solid line is Drop's calculated equilibration curve and the dashed line is the observed equilibration curve from Mikol et al. (1990).
(a) A temperature of 293 K and an initial drop of 4 ml reservoir solution and 4 ml water. (b) A temperature of 293 K and an initial drop of 8 ml reservoir
solution and 8 ml water. (c) A temperature of 293 K and an initial drop of 12 ml reservoir solution and 12 ml water. (d) A temperature of 293 K and an
initial drop of 16 ml reservoir solution and 16 ml water. (e) A temperature of 276 K and an initial drop of 4 ml reservoir solution and 4 ml water. (f) A
temperature of 276 K and an initial drop of 8 ml reservoir solution and 8 ml water. (g) A temperature of 276 K and an initial drop of 12 ml reservoir
solution and 12 ml water. (h) A temperature of 276 K and an initial drop of 16 ml reservoir solution and 16 ml water.
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al. (1990) the equilibration rate for a hanging drop under

many conditions was measured experimentally. A function of

the form

V�t�=V�o� � A� B exp�ÿt=�� �6�
was then ®t by these authors to their data and A, B and � were

reported for various precipitants, temperatures and initial

drop volumes. Here, V(t) is the volume of the drop at time t.

As a result, their work provides an excellent test of the validity

of the Drop model. Of the three precipitants (MPD, PEG6000

and ammonium sulfate), ammonium sulfate is the only one for

which vapor-pressure data (Robinson & Stokes, 1959) could

be found. Accordingly, experiments E01±E04 and E09±E12

(Mikol et al., 1990) were chosen as the test cases. Examples of

Drop's calculated equilibration curves versus the experimen-

tally determined curves are shown in Fig. 1. The agreement is

very good. The most important factor for obtaining accurate

equilibration curves appears to be obtaining accurate vapor-

pressure data.

Next, the rate-limiting constant in the model was deter-

mined. There are three rate constants (see x2.1), the diffusion

coef®cient of the precipitant in water Dp, the diffusion co-

ef®cient of water vapor in air Dv and the evaporation coef®-

cient E. For these tests the base conditions of experiment E01

of Mikol et al. (1990) were used, i.e. a reservoir of 1.6 M

ammonium sulfate, an initial drop of 4 ml water plus 4 ml

reservoir solution, a temperature of 293 K and a cell height of

1 cm. Also, for these tests the equilibration time is de®ned as

the time at which the drop is a ®xed percentage equilibrated

by volume (unless otherwise stated, 90% equilibration was

used).

The evaporation coef®cient E does not affect the predicted

equilibration rate until it is less than 10ÿ3 (see Fig. 2), which is

far outside the physical range (as mentioned before, E is

believed to lie between 0.05 and 1). This offers an explanation

as to why E has been dif®cult to measure (see Jones, 1992, for

a discussion). The diffusion coef®cient for the precipitant in

water does not affect the calculated equilibration times (see

Fig. 3) until Dp < 10ÿ6 cm2 sÿ1 (for ammonium sulfate Dp is

around 10ÿ5 cm2 sÿ1). Finally, the diffusion coef®cient for

water vapor in air, Dv, greatly affects the rate of equilibration

(see Fig. 4). The equilibration time is roughly inversely

proportional to Dv, which shows that the diffusion of water

vapor through the air space is rate limiting.

The fact that the diffusion of water vapor through the air

space is rate limiting is somewhat surprising. The standard

scaling arguments (Fowlis et al., 1988) suggest that a concen-

tration gradient of precipitant in the drop should equilibrate

approximately 1000 times slower than a concentration

gradient of water vapor in the air space. In this case, the

scaling arguments are somewhat misleading because the

concentration of water vapor in air over pure water at 298 K is

only 3.8� 10ÿ7 mol cm3 (Handbook of Chemistry and Physics,

1996). Thus, for a 2 cm3 cell at 298 K there is at most the

equivalent of 0.015 ml of water in the vapor state. As a result, a

small amount of water evaporated from the drop leads to a

large change in the concentration of vapor in the air space of

the cell. Thus, the concentration of the precipitant in the drop

does not get as far from equilibrium as does the concentration

of water vapor in the cell.

The fact that the diffusion of water vapor through air space

is rate limiting has a signi®cant implication. Since the diffusion

of the water vapor is rate limiting, there is little variation in the

Figure 2
The effects of the evaporation coef®cient, E, on the equilibration. The
calculations were performed with the baseline conditions of Fig. 1(a) and
with ÿlog10 E varying from 0 to 4 in steps of 0.2. The estimated physical
range for E is from 0.05 (Jones, 1992) to 1 (Jamieson, 1992). The ®rst value
is represented by the vertical dashed line. The equilibration time is the
time at which the drop is 90% equilibrated by volume. The value of E = 1
was used in all other calculations.

Figure 3
The effects of the precipitant-diffusion coef®cient Dp on the equilibra-
tion. The calculations were performed with the baseline conditions of
Fig. 1(a) and with ÿlog10 Dp varying from 4 to 7 in steps of 0.15. The
vertical dashed line represents a typical value for the precipitant-diffusion
coef®cient for a precipitant such as ammonnium sulfate. The equilibra-
tion time is the time at which the drop is 90% equilibrated by volume.



precipitant concentration (spatially) throughout the drop (the

model typically yields less than a 1% spatial variation in

precipitant concentration in the drop). Since there is essen-

tially no precipitant concentration gradient in the drop, there

is no convection in the drop owing to gravity. As a result,

gravity does not affect the equilibration rate of a hanging-drop

experiment to a signi®cant extent. As a side note, this result

does not imply that gravity has no effect on crystal growth

during a hanging-drop experiment. During crystal growth

there might indeed be a large enough protein concentration

gradient to cause gravity-induced convection.

Finally, the effects of some of the parameters in a hanging-

drop experiment, in particular the contact angle, the initial

drop volume, the temperature and the drop-to-reservoir

distance, are considered quantitatively. The contact angle has

little affect on the equilibration time. Varying the contact

angle from 90 to 50� (the surface area increases by a factor of

1.17) decreases the predicted equilibration time (i.e. increases

the equilibration rate) by about 7%. This is in good agreement

with experimental results (Mikol et al., 1990; see in particular

experiments E09 versus E53 and E10 versus E54). The equi-

libration time depends almost linearly on the initial drop

volume (Fig. 5). The slight degree of sub-linearity evident in

Fig. 5 is likely to arise because the drop surface area increases

with drop volume. Temperature also has a big effect on the

equilibration time (see Fig. 6). The equilibration time changes

by about a factor of three in going from 293 to 276 K. The

diffusion coef®cient, however, decreases by only 10% over this

range. The primary reason for this large dependence on

temperature is the change in the vapor pressure of water: the

vapor pressure of pure water at 293 K is roughly three times

that at 276 K. The temperature dependence of the calculations

is in excellent agreement with experimental data (see Figs. 1a

versus 1e, 1b versus 1f, 4c versus 1g and 1d versus 1h).

Surprisingly, the equilibration time increases roughly line-

arly with the drop-to-reservoir distance (see Fig. 7). Typically,

one expects the equilibration time for a diffusion process to

vary quadratically (the units for a diffusion constant are length

squared per time) with the length over which the species is

diffusing. In a situation as complicated as a hanging drop,

however, the simple scaling arguments that lead to the

quadratic dependence are not valid. This Drop result is in

excellent agreement with the experimental results of Luft et al.

(1996) (see Fig. 7).

4. Conclusions

In principle, the model proposed here is similar to that

proposed in Fowlis et al. (1988) and Sibile et al. (1991) with one

key philosophic difference: Drop seeks a numerical solution

rather than an analytical solution. The advantages of a

numerical approach over an analytical approach include:

fewer geometric assumptions are necessary, experimental data

such as vapor pressure data can be incorporated directly

rather than indirectly through a least-squares ®t, the diffusion

in the drop can be modeled explicitly and a numerical model is

much easier to extend to more complicated situations such as

volatile precipitants, multiple species in the drop etc. The

potential disadvantages of any numerical scheme are excessive

computational expense and numerical error. With modern

computers, both the numerical error and computational

expense required for Drop proved to be easily kept within

reasonable limits. This is of signi®cance since an accurate

calculation of the equilibration rates can lend greater insight

into the precipitant and protein concentrations when a protein
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Figure 4
The effects of the vapor-diffusion coef®cient Dv on the equilibration. The
calculations were performed with the baseline conditions of Fig. 1(a) and
withÿlog10 Dv varying from 0 to 2 in steps of 0.1. The vertical dashed line
represents the diffusion coef®cient of water vapor in air at 293 K. The
equilibration time is the time at which the drop is 90% equilibrated by
volume.

Figure 5
The effects of the initial drop volume on the equilibration. The
calculations were performed with the baseline conditions of Fig. 1(a)
and with the initial drop volume varying from 2 to 32 ml in steps of 1 ml.
The equilibration time is the time at which the drop is 90% equilibrated
by volume.
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is nucleating and crystallizing. This information could in turn

be useful for ®ne-tuning crystallization conditions.

Though all the comparisons with experimental results were

performed with either NaCl or ammonium sulfate, some of the

trends are applicable for other non-volatile precipitants such

polyethylene glycol (PEG) and 2-methyl-2,4-pentanediol

(MPD). The three most important parameters in determining

the equilibration time are initial drop volume, the temperature

and the drop-to-reservoir distance. The conclusions that the

equilibration time is roughly linearly dependent on the initial

drop volume (see Fig. 5) and drop-to-reservoir distance (see

Fig. 7) are likely to be independent of the precipitant. The

conclusion that the equilibration rate changes by a factor of

three when the temperature decreases from 293 to 276 K is

likely to be less valid for the precipitants such as PEG which

might adopt more compact conformations at lower tempera-

tures. In most cases, this effect is likely to be very small and the

factor of three difference in equilibration rate between 293

and 276 K is reasonably accurate.

In theory, in order to consider different precipitants two

types of data are necessary: diffusion coef®cients for the

precipitant in water and water-vapor pressures at various

precipitant concentrations. The diffusion coef®cients are not

likely to have a large practical effect. According to the Stokes±

Einstein relation (Cussler, 1984) the diffusion coef®cient of a

solute should be inversely proportional to its radius as long as

its radius is more than ®ve times that of the solvent. Thus, even

for the largest precipitants the diffusion coef®cient is not likely

to decrease by more than a factor of 10, which leaves it in the

range of having no effect (see Fig. 3). The water-vapor pres-

sures with the given precipitant, however, are crucial in

obtaining reliable results. Unfortunately, we were unable to

®nd the necessary vapor pressures for PEG or MPD as

precipitating agents and it appears that they must be

measured.

Though the numerical model of Drop is in excellent

agreement with all available data on hanging-drop equilibra-

tion rates, there are also several potential improvements for

Drop. As mentioned previously, Drop does not allow for

volatile precipitants. The theory for volatile precipitants is

largely the same as that presented in x2. To handle a volatile

precipitant an additional diffusion equation similar to (1) and

(2) to model the diffusion of precipitant in the vapor state and

an equation similar to (3) to describe the evaporation of

precipitant would be required. The primary dif®culty in

including volatile precipitants is that accurate physical para-

meters such as vapor-diffusion coef®cients and chemical

potentials are required. As an interesting side note, with a

volatile precipitant the requirement that equilibrium is

reached when the chemical potentials of all species are

constant throughout the cell no longer uniquely determines

the ®nal drop volume. The relative rates at which the preci-

pitant and water evaporate and diffuse not only determine the

rate of equilibration but also determine the ®nal drop volume.

A potential improvement to Drop would be to allow for a

layer of oil on top of the reservoir. Again, the theory for such a

model would be very similar to that presented in x2. To include

the layer of oil in the model one new rate equation would be

necessary: an equation similar to (2) and (3) describing the

diffusion of water in oil. As with the case of the volatile

precipitant, the dif®culty in including the layer of oil would be

to measure the chemical potential and diffusion coef®cient of

water in the oil being used.

Figure 6
The effects of temperature on the equilibration. The calculations were
performed with the baseline conditions of Fig. 1(a) and with the
temperature varying from 274 to 303 K in steps of 1 K. The equilibration
time is the time at which the drop is 90% equilibrated by volume.

Figure 7
The effects of the cell height on the equilibration. The calculations were
performed with the cell height varying from 5 to 80 mm in steps of
2.5 mm. The equilibration time is the time at which the drop is 50%
equilibrated by volume. The circles are the observed equilibration times
of Luft et al. (1996). The baseline conditions of their experiments and
these calculations are initial drops of 24 ml of 1 M NaCl, a reservoir
solution of 2 M NaCl and a temperature of approximately 296 K.
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